The impact of artificial intelligence in the recruiting process on organizational attractiveness: When and why AI recruiting leads organizational attractiveness

Main Article Content

Yeseul Jung
Jiyoung Park

Abstract

Organizations are increasingly integrating artificial intelligence (AI) technology into their recruitment process. However, there is still a lack of understanding regarding how AI technology affects job applicants. Based on signal theory, we expected that the incorporation of AI technology in the recruitment process would convey a specific signal to job applicants, which would affect their organizational attractiveness. Specifically, we expect that the application of AI technology would influence the attractiveness of the organization based on the perceived innovativeness and procedural fairness of the organization. Additionally, we hypothesized that job applicant’s personal innovativeness would facilitate the effect of AI technology on organizational attractiveness. The results using two scenario studies showed that as the level of AI technology increased in the recruitment process, the perceived innovativeness of the organization increased, leading to an increase in organizational attractiveness. On the other hand, perceived procedural justice did not mediate the relationship between the AI technology application in the recruitment process and organizational attractiveness. When individuals had a high level of personal innovativeness, the impact of AI technology on organizational attractiveness was positive, but the effect was negative among those with low personal innovativeness. Our results suggest that the impact of AI applications depends on how job applicants interpret and perceive the incorporation of AI technology rather than AI technology application itself. Based on these results, we discussed implications, limitations, and recommendations for future research.

Metrics

Metrics Loading ...

Article Details

How to Cite
Jung 예., & Park 지. (2023). The impact of artificial intelligence in the recruiting process on organizational attractiveness: When and why AI recruiting leads organizational attractiveness. Korean Journal of Industrial and Organizational Psychology, 36(4), 611–642. Retrieved from https://journal.ksiop.or.kr/index.php/KJIOP/article/view/586
Section
Empirical Articles

References

김영은 (2018). 면접관이 된 인공지능…기업 채용 ‘AI 면접 바람’ 거세진다. 한경 비즈니스. https://magazine.hankyung.com/business/article/201810142348b

김재철, 정다정, 강민균, 정지우, 허창구 (2022). 채용시장의 뉴노멀, 비대면 면접에서 투명성과 경고메시지의 활용: 지원자 반응 및 응답왜곡에 미치는 영향. 한국심리학회지: 산업 및 조직, 35(2), 155-185. https://doi.org/10.24230/kjiop.v35i2.155-185

노민정, 최민경 (2018). 개인의 혁신성이 인공지능 스피커의 수용에 미치는 영향: 가계지출 통제력에 따른 조절효과를 중심으로. 경영연구, 33(1), 195-230.

문혜진, 남상희 (2022). 인공지능을 활용한 비동시적 면접 연구의 현황과 과제. 한국심리학회지: 산업 및 조직, 35(3), 385-413. https://doi.org/10.24230/kjiop.v35i3.385-413

박우성, 이새벽 (2022). 인공지능 면접에 대한 구직자의 수용의도 결정요인. 아태경상저널,14(3),54-78.

박지영, 정예슬 (2021). 직장인의 인공지능 기술 사용의도: 기술에 대한 지각된 유용성과 신뢰, 조직지원인식의 역할을 중심으로. 한국심리학회지: 산업 및 조직, 34(2), 183-211. https://doi.org/10.24230/kjiop.v34i2.183-211

손승원, 오주연 (2023). AI 채용시스템 도입성과. 한국진로창업경영학회지, 7(2), 137-155.

손지혜 (2023). 진학사 캐치·잡플래닛, AI 면접 서비스 출시…AI 코칭 러시. 전자신문https://www.etnews.com/20230502000172

안재현, 권석균 (2019). 시나리오 접근법을 통한 전략적 CSR 과 자선적 CSR 의 인지적 해석이 조직 매력도와 입사제안 수용의도에 미치는 영향. 윤리경영연구, 19(2), 29-62.

이용규, 정석환 (2007). 공조직에서 조직 공정성이 구성원의 혁신행동에 미치는 영향: 분배공정성과 절차 공정성을 중심으로. 정부학연구, 13(1), 7-35.

이혜민, 사영준 (2023). AI 역량 면접에 대한 이용자 반응: 블라인드의 게시글에 나타난 감정과 귀인을 중심으로. 한국 HCI 학회 학술대회, 371-376.

이환우, 이새롬, 정경철 (2019). 채용 전형에서 인공지능 기술 도입이 입사 지원의도에 미치는 영향. 정보시스템연구, 28(2), 25-52.

진수민 (2016). 개인혁신성과 조직혁신성 간 적합성이 과업갈등에 미치는 영향. 서강대학교 기술경영전문대학원 석사학위논문.

Acikgoz, Y., Davison, K. H., Compagnone, M., & Laske, M. (2020). Justice perceptions of artificial intelligence in selection. International Journal of Selection and Assessment, 28(4), 399-416. https://doi.org/10.1111/ijsa.12306

Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information Systems Research, 9(2), 204-215. https://doi.org/10.1287/isre.9.2.204

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.

Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., ... & Rahwan, I. (2018). The moral machine experiment. Nature, 563(7729), 59-64. https://doi.org/10.1038/s41586-018-0637-6

Bangerter, A., Roulin, N., & König, C. J. (2012). Personnel selection as a signaling game. Journal of Applied Psychology, 97(4), 719-738. https://doi.org/10.1037/a0026078

Bauer, T. N., Truxillo, D. M., Sanchez, R. J., Craig, J. M., Ferrara, P., & Campion, M. A. (2001). Applicant reactions to selection: Development of the selection procedural justice scale (SPJS). Personnel Psychology, 54(2), 387-419. https://doi.org/10.1111/j.1744-6570.2001.tb00097.x

Black, J. S., & van Esch, P. (2020). AI-enabled recruiting: What is it and how should a manager use it? Business Horizons, 63(2), 215-226. https://doi.org/10.1016/j.bushor.2019.12.001

Brougham, D., & Haar, J. (2018). Smart technology, artificial intelligence, robotics, and algorithms (STARA): Employees’ perceptions of our future workplace. Journal of Management & Organization, 24(2), 239-257. https://doi.org/10.1017/jmo.2016.55

Caligiuri, P., Colakoglu, S., Cerdin, J. L., & Kim, M. S. (2010). Examining cross-cultural and individual differences in predicting employer reputation as a driver of employer attraction. International Journal of Cross Cultural Management, 10(2), 137-151. https://doi.org/10.1177/1470595810370890

Chapman, D. S., Uggerslev, K. L., & Webster, J. (2003). Applicant reactions to face-to-face and technology-mediated interviews: A field investigation. Journal of Applied Psychology, 88(5), 944-953. https://doi.org/10.1037/0021-9010.88.5.944

Colquitt, J. A. (2001). On the dimensionality of organizational justice: A construct validation of a measure. Journal of Applied Psychology, 86(3), 386–400. https://doi.org/10.1037/0021-9010.86.3.386

Colquitt, J. A., Conlon, D. E., Wesson, M. J., Porter, C. O., & Ng, K. Y. (2001). Justice at the millennium: a meta-analytic review of 25 years of organizational justice research. Journal of Applied Psychology, 86(3), 425-445. https://doi.org/10.1037/0021-9010.86.3.425

Connelly, B. L., Certo, S. T., Ireland, R. D., & Reutzel, C. R. (2011). Signaling theory: A review and assessment. Journal of Management, 37(1), 39-67. https://doi.org/10.1177/0149206310388419

da Motta Veiga, S. P., Figueroa-Armijos, M., & Clark, B. B. (2023). Seeming ethical makes you attractive: Unraveling how ethical perceptions of AI in hiring impacts organizational innovativeness and attractiveness. Journal of Business Ethics, 186, 199-216. https://doi.org/10.1007/s10551-023-05380-6

Folger, N., Brosi, P., Stumpf-Wollersheim, J. et al. (2022). Applicant reactions to digital selection methods: A signaling perspective on innovativeness and procedural justice. Journal of Business and Psychology, 37, 735-757. https://doi.org/10.1007/s10869-021-09770-3

Gardner, B. B., & Levy, S. J. (1999). The product and the brand. Sidney J. Levy und Dennis W. Rook (Hg.): Brands, consumers, symbols, & research. Sidney J. Levy on marketing. Thousand Oaks, Calif: Sage Publications, 131-141.

Georgiou, K., & Lievens, F. (2022). Gamifying an assessment method: what signals are organizations sending to applicants?. Journal of Managerial Psychology, 37(6), 559-574. https://doi.org/10.1108/JMP-12-2020-0653

Georgiou, K., & Nikolaou, I. (2020). Are applicants in favor of traditional or gamified assessment methods? Exploring applicant reactions towards a gamified selection method. Computers in Human Behavior, 109, 106356. https://doi.org/10.1016/j.chb.2020.106356

Hausknecht, J. P., Day, D. V., & Thomas, S. C. (2004). Applicant reactions to selection procedures: An updated model and meta‐analysis. Personnel Psychology, 57(3), 639-683. https://doi.org/10.1111/j.1744-6570.2004.00003.x

Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408-420. https://doi.org/10.1080/03637750903310360

Hayes, A. F. (2013). Introduction to Mediation, Moderation, and Conditional Process Analysis. New York, NY: The Guilford Press.

Hickman, L., Saef, R., Ng, V., Woo, S. E., Tay, L., & Bosch, N. (2021). Developing and evaluating language‐based machine learning algorithms for inferring applicant personality in video interviews. Human Resource Management Journal, 1-21. https://doi.org/10.1111/1748-8583.12356

Highhouse, S., Lievens, F., & Sinar, E. F. (2003). Measuring attraction to organizations. Educational and Psychological Measurement, 63(6), 986-1001. https://doi.org/10.1177/0013164403258403

Hunkenschroer, A. L., & Luetge, C. (2022). Ethics of AI-enabled recruiting and selection: A review and research agenda. Journal of Business Ethics, 178(4), 977-1007. https://doi.org/10.1007/s10551-022-05049-6

Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15-25. https://doi.org/10.1016/j.bushor.2018.08.004

Kim, T. W., & Duhachek, A. (2020). Artificial intelligence and persuasion: A construal-level account. Psychological Science, 31(4), 363-380. https://doi.org/10.1177/0956797620904985

Köchling, A., Wehner, M. C., & Warkocz, J. (2022). Can I show my skills? Affective responses to artificial intelligence in the recruitment process. Review of Managerial Science, 17, 2109-2138. https://doi.org/10.1007/s11846-021-00514-4

Langer, M., König, C. J., Sanchez, D. R. P., & Samadi, S. (2020). Highly automated interviews: Applicant reactions and the organizational context. Journal of Managerial Psychology, 35(4), 301-314. https://doi.org/10.1108/JMP-09-2018-0402

Lievens, F., & Highhouse, S. (2003). The relation of instrumental and symbolic attributes to a company’s attractiveness as an employer. Personnel Psychology, 56(1), 75-102. https://doi.org/10.1111/j.1744-6570.2003.tb00144.x

Lind, E. A., Kray, L., & Thompson, L. (2001). Primacy effects in justice judgments: Testing predictions from fairness heuristic theory. Organizational Behavior and Human Decision Processes, 85(2), 189-210. https://doi.org/10.1006/obhd.2000.2937

MacKinnon, D. P., Krull, J. L., & Lockwood, C. M. (2000). Equivalence of the mediation, confounding, and suppression effect. Prevention Science, 1, 173–181. https://doi.org/10.1023/A:1026595011371

Mantello, P., Ho, M. T., Nguyen, M. H., & Vuong, Q. H. (2023). Bosses without a heart: socio-demographic and cross-cultural determinants of attitude toward Emotional AI in the workplace. AI & Society, 38(1), 97-119. https://doi.org/10.1007/s00146-021-01290-1

McCarthy, J. M., Bauer, T. N., Truxillo, D. M., Anderson, N. R., Costa, A. C., & Ahmed, S. M. (2017). Applicant perspectives during selection: A review addressing “So what?,”“What’s new?,” and “Where to next?”. Journal of Management, 43(6), 1693-1725. https://doi.org/10.1177/0149206316681846

McFarlin, D. B., & Sweeney, P. D. (1992). Distributive and procedural justice as predictors of satisfaction with personal and organizational outcomes. Academy of Management Journal, 35(3), 626-637. https://doi.org/10.5465/256489

Min, J., Kim, S., Park, Y., & Sohn, Y. W. (2018). A Comparative Study of Potential Job Candidates' Perceptions of an AI Recruiter and a Human Recruiter. Journal of the Korea Convergence Society, 9(5), 191-202. https://doi.org/10.15207/JKCS.2018.9.5.191

Mirowska, A., & Mesnet, L. (2022). Preferring the devil you know: Potential applicant reactions to artificial intelligence evaluation of interviews. Human Resource Management Journal, 32(2), 364-383. https://doi.org/10.1111/1748-8583.12393

Oostrom, J. K., Van Der Linden, D., Born, M. P., & Van Der Molen, H. T. (2013). New technology in personnel selection: How recruiter characteristics affect the adoption of new selection technology. Computers in Human Behavior, 29(6), 2404-2415. https://doi.org/10.1016/j.chb.2013.05.025

Park, J., & Woo, S. E. (2022). Who likes artificial intelligence? Personality predictors of attitudes toward artificial intelligence. The Journal of Psychology, 156(1), 68-94. https://doi.org/10.1080/00223980.2021.2012109

Park, J., Woo, S. E., & Kim, J. (2023). Attitudes toward artificial intelligence application at work: A scale development and validation. unpublished manuscript.

Rucker, D. D., Preacher, K. J., Tormala, Z. L., & Petty, R. E. (2011). Mediation analysis in social psychology: Current practices and new recommendations. Social and Personality Psychology Compass, 5(6), 359-371. https://doi.org/10.1111/j.1751-9004.2011.00355.x

Ruvio, A. A., Shoham, A., Vigoda‐Gadot, E., & Schwabsky, N. (2014). Organizational innovativeness: construct development and cross‐cultural validation. Journal of Product Innovation Management, 31(5), 1004-1022. https://doi.org/10.1111/jpim.12141

Ryan, A. M., & Ployhart, R. E. (2000). Applicants’ perceptions of selection procedures and decisions: A critical review and agenda for the future. Journal of Management, 26(3), 565-606. https://doi.org/10.1016/S0149-2063(00)00041-6

Sajjadiani, S., Sojourner, A. J., Kammeyer-Mueller, J. D., & Mykerezi, E. (2019). Using machine learning to translate applicant work history into predictors of performance and turnover. Journal of Applied Psychology, 104(10), 1207-1225. https://doi.org/10.1037/apl0000405

Scott, S. G., & Bruce, R. A. (1994). Determinants of innovative behavior: A path model of individual innovation in the workplace. Academy of Management Journal, 37(3), 580-607. https://doi.org/10.5465/256701

Scott, B. A., Colquitt, J. A., & Zapata-Phelan, C. P. (2007). Justice as a dependent variable: Subordinate charisma as a predictor of interpersonal and informational justice perceptions. Journal of Applied Psychology, 92(6), 1597–1609. https://doi.org/10.1037/0021-9010.92.6.1597

Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: new procedures and recommendations. Psychological Methods, 7(4), 422-445. https://doi.org/10.1037/1082-989X.7.4.422

Slaughter, J. E., Zickar, M. J., Highhouse, S., & Mohr, D. C. (2004). Personality trait inferences about organizations: development of a measure and assessment of construct validity. Journal of Applied Psychology, 89(1), 85-103. https://doi.org/10.1037/0021-9010.89.1.85

Stoughton, J. W., Thompson, L. F., & Meade, A. W. (2015). Examining applicant reactions to the use of social networking websites in pre-employment screening. Journal of Business and Psychology, 30(1), 73-88. https://doi.org/10.1007/s10869-013-9333-6

Tsai, W. C., & Yang, I. W. F. (2010). Does image matter to different job applicants? The influences of corporate image and applicant individual differences on organizational attractiveness. International Journal of Selection and Assessment, 18(1), 48-63. https://doi.org/10.1111/j.1468-2389.2010.00488.x

Turban, D. B., & Keon, T. L. (1993). Organizational attractiveness: An interactionist perspective. Journal of Applied Psychology, 78(2), 184-193. https://doi.org/10.1037/0021-9010.78.2.184

van Esch, P., Black, J. S., & Arli, D. (2021). Job candidates’ reactions to AI-enabled job application processes. AI and Ethics, 1(2), 119-130. https://doi.org/10.1007/s43681-020-00025-0

Wesche, J. S., & Sonderegger, A. (2021). Repelled at first sight? Expectations and intentions of job-seekers reading about AI selection in job advertisements. Computers in Human Behavior, 125, 106931. https://doi.org/10.1016/j.chb.2021.106931

Williamson, I. O., Lepak, D. P., & King, J. (2003). The effect of company recruitment web site orientation on individuals’ perceptions of organizational attractiveness. Journal of Vocational Behavior, 63(2), 242-263. https://doi.org/10.1016/j.chb.2021.106931